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Abstract
The explosion of information requires robust methods to validate knowledge claims. On the other hand, there is also an
increase interest on understanding and creating methods that helps on the interpretation of machine learning models. Both
approaches converge on the necessity of a validation step that clarifies or helps end-users to better understand if the decision
or information provided by the model is what is needed or if there is some mismatch between what the artificial intelligent
system is suggesting and reality. Large Language Models (LLMs), with their ability to process and synthesize vast amounts of
text data, have emerged as potential tools for this purpose. This study explores the utility of LLMs in hypothesis validation in
two different scenarios. The first relies on hypothesis generated from explanations obtained by XAI methods or by inherently
explainable models. We propose a method to transform the inferences provided by a machine learning model into explanations
in natural language, hence linking the symbolic and sub-symbolic areas. The second relies on hypothesis generated with
techniques that automatically extract answers from text. The results show that LLMs can complement other XAI techniques
and although all LLMs analyzed are able to provide truthfulness-related answers, not all are equally successful.
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1. Introduction
In recent years, the field of artificial intelligence has wit-
nessed a remarkable evolution in natural language pro-
cessing capabilities, largely driven by the advent of Large
Language Models (LLMs). The essence of utilizing these
models for Artificial Intelligence (AI) tasks such as knowl-
edge and hypothesis validation lies in their ability to
understand, generate, and manipulate human language.
This ability is crucial for tasks that require a deep under-
standing of context and nuances of human communica-
tion.

Applying LLMs to real-world scenarios inevitably
leads to language generation deviating from known facts
(aka “factual hallucination” [1] due to multiple causes
(e.g. it may be over-estimating due to overfitting on bi-
ased prompts (framing effect)). Several studies have tried
to measure these effects but it is still difficult to general-
ize them outside the specific context where the studies
have been performed. In [2] the authors study prompt
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framing and in-context interference effects showing that
large language models are subject to the influences of
various hallucinations-inducing causes. This is true for
Word Prediction (WP), Question-Answer (QA), and Fact-
Checking (FC). Other studies [3] compare the results
obtained by machine learning models with those pro-
duced by LLMs for diagnostic decision support systems.
They propose a processing pipeline for interacting with
language models concluding that LLMs models often are
ambiguous and provide incorrect diagnoses, being the
prompt engineering a critical step in the process. Thus,
claim verification has emerged as a key-point to discern
between misinformation and real facts. Most of these
works [4][5] rely on human-annotated datasets to verify
the explanations or decisions but that information is not
accessible in hypothesis testing scenarios.

In this paper, we explore the innovative application
of Large Language Models (LLMs) as validation tools
in fact-checking and hypothesis fact-checking scenar-
ios. Traditionally, the validation of conclusions drawn
from data and models in specialized domains has been
a task reserved for human experts, largely due to the
complexity and domain-specific nature of the required
knowledge. However, with the evolution of LLMs, the
question arises whether these powerful natural language
processing tools can assume a role similar to human ex-
perts in the validation of domain-specific knowledge.

The primary goal of this work is to analyze and as-
sess the ability of LLMs to serve as domain experts in a
clinical scenario, specifically in validating explanations
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(and thereof validating the models) derived from classi-
cal machine learning decision models. These explana-
tions, presented in the form of affirmative statements
such as "the hypertension increase the risk of death from
COVID19", are transformed into questions (for example,
"Does hypertension mean an increased risk of death from
COVID-19?") to be presented to the LLMs. This approach
allows us to directly evaluate the LLM models’ as a knowl-
edge base to validate specific claims within the domain,
offering a unique perspective on their applicability as
validation tools in scientific and clinical contexts.

This work aims to address the following research ques-
tions: RQ1) What effect does the variation in the number
of options within a fact-checking question have on the
responses provided by Large Language Models (LLMs)?
RQ2) How consistent are the boolean answers (i.e. yes,
or no) provided by Large Language Models (LLMs)? RQ3)
What is the impact of integrating machine learning infer-
ences with Large Language Models (LLMs) on enriching
and validating the explanations?

Through this analysis, we seek not only to understand
the level of knowledge and accuracy of LLMs in spe-
cialized domains but also to investigate their potential
to complement or, in some cases, replace the need for
human peer review in the validation stage of scientific
conclusions.

Our contributions are:

1. a novel assessment method that integrates ma-
chine learning inferences with Large Language
Models (LLMs) to generate fact-checking (FC)
type questions.

2. a study on the variability and consistency of re-
sponses provided by LLMs in multiple-choice
questions and scenarios with established ground
truths..

3. an investigation into the variability of explana-
tions provided by LLMs in scenarios involving
fact-checking (including questions with multiple
factual options) and fact recovery, offering a com-
prehensive understanding of LLMs’ explanatory
capabilities and their potential for enhancing AI
interpretability.

2. Related works
Prompt framing effect The study of the prompt fram-
ing effect reveals that the performance of Large Language
Models (LLMs) is highly dependent on the construction of
the prompts, with a significant focus on the consistency
of LLMs’ responses to similar prompts. This concept,
discussed in [6], [7], and [8], examines LLMs’ ability
to provide consistent outputs for semantically similar
prompts and their sensitivity to hallucination-inducing

inputs. The examination of LLMs under different condi-
tions, such as varying the context and structure of the
prompts, sheds light on their performance variability and
the strategies for optimizing accuracy.

Building on this foundation, the interplay between
context, choice structure, and decision-making, as ex-
plored in [9], [10], [11], and [12], directly relates to the
challenges LLMs face. This parallel between human and
computational decision-making processes emphasizes
the importance of carefully designed prompts and the
strategic manipulation of choice options to improve LLM
reliability and decision accuracy. Through innovative
decision-making strategies and prompt engineering tech-
niques proposed in [13], [14], [15], [16], and [17], the
nuanced approach to prompt framing is critical for en-
hancing LLM interactions and understanding. This body
of work collectively illustrates a key insight: adjusting
the number of options and the framing of prompts can
profoundly influence the effectiveness of LLMs in verify-
ing statements and making decisions, bridging the gap
between consistency in output and the complexity of
input conditions.

Explainable AI and LLMs Interpretability and ex-
plainability in Machine Learning (ML) refers to the ability
to make understandable an ML model’s workings. This
is particularly vital in high-risk applications and desir-
able in most cases. The burgeoning field of research that
addresses to foster this ability is known as eXplainable Ar-
tificial Intelligence (XAI). A variety of XAI methods have
been developed in recent years. They may be related to
intrinsically interpretable models or to "black box" mod-
els, but all pursue coherent and meaningful explanations
for the audience. As an example, SHAP (SHapley Addi-
tive exPlanations) is one of the most widely used XAI
model agnostic techniques. It is based on concepts from
game theory that allow the computing, which are the
features that contribute the most to the outcomes of the
black-box model, by trying different feature set permu-
tations [18]. LIME (Local Interpretable Model-agnostic
Explanations) is another well known example that builds
a simple linear surrogate model to explain each of the
predictions of the learned black-box model [19]. There
are also some interpretable ML models such as logistic
regression, Generalised Linear Models (GLMs), or Gener-
alised Additive Models (GAMs).There are some attempts
to facilitate the comprehension of some XAI methods
providing new tools to end-users. At [20] a new GPT
x-[plAIn] is proposed to transform the output explana-
tions provided by those methods (e.g. SHAP or LIME) to
natural language that contains the technical descriptions
of the results. Despite the improvements in end-user sat-
isfaction, this work does not include any enrichment or
additional information that could contextualize not only
the explanations themselves, but also the meaning and



validation of the application domain. In [21] the authors
propose to use LLMs to facilitate decision-making pro-
cesss by the end users providing concise summaries of
varios XAI methods tailored for different audiences. This
can be viewed as LLM enhanced XAI explainer trying
to bridge the gap between complex AI technologies and
their practical applications.

Veracity and truth extraction The exploration of
truth within the realm of big data and its verification
through LLMs embodies a complex interaction between
technological advancements and the multifaceted nature
of truth. The assembly method, as proposed by [22],
marks a significant step in addressing the challenge of
data veracity by combining individual truth discovery
methods to mitigate the effects of limited labeled ground
truth availability. This approach lays the groundwork for
further research on the role of technology in differentiat-
ing between truth and falsehood. Furthermore, research
on linguistic indicators of truth and deception, such as
that of [23], reveals the potential of linguistic complexi-
ties and immediacy to act as markers to distinguish be-
tween truthful and deceptive narratives, enriching the
conversation about truth verification in digital commu-
nications.

Recent advances in artificial intelligence, notably the
conceptualization of models such as InstructGPT as
"Truth Machines" by [24], highlight ongoing efforts to
define and operationalize truth through sophisticated
data analysis and model architectures. Currently, innova-
tive methodologies such as the DoLa decoding strategy
by [25] and the development of truthfulness personas
by [26] aim to enhance the factuality and reliability of
LLM outputs. These strategies not only address the chal-
lenge of hallucinations in model responses but also open
up new pathways for embedding truthfulness within AI
systems, underscoring the dynamic nature of research
focused on achieving reliable knowledge verification and
decision-making processes in the digital era.

3. Approach and Problem Setup
Our proposal involves using LLMs as knowledge bases
to evaluate the outcomes of machine learning models
by answering Boolean questions derived from the mod-
els’ inferences. This approach aims to harness the com-
prehensive knowledge and understanding capabilities
of LLMs to verify the accuracy and reliability of infer-
ences made by machine learning models, thereby provid-
ing a novel method for validating AI-generated insights
through direct, yes-or-no questioning.

3.1. Large Language Models
A range of LLMs have been developed in the last years.
GPT-4, developed by OpenAI, is a state-of-the-art LLM
known for its deep learning architecture. As part of the
Generative Pre-trained Transformer series, it includes
a large network of multi-layer transformers, capable of
processing sequential data and preserving textual depen-
dencies in the long term. This version marks a signif-
icant advancement over its predecessors by scaling up
the number of parameters and broadening the diversity
of its training data, thus enhancing its ability to gener-
ate coherent and contextually relevant text based on the
input it receives [27].

Moreover, Google’s DeepMind project Gemini, is a
key competitor to GPT-4. Gemini is a family of models
built on top of transformer decoders that employ atten-
tion mechanisms, analogous to GPT-4. Gemini Pro, the
second model in the family in terms of size, has been op-
timized for both cost and latency, offering considerable
performance improvements across numerous tasks; it is
designed to understand, reason, and generate outputs
across various types of data, including text [28].

Similarly, Llama 2 constitutes a collection of pretrained
and fine-tuned LLMs that is distinctive from the models
mentioned due to its open-source nature [29]. This group
of models developed by Meta includes two models (Llama
2 and Llama 2-Chat) with different versions that adjust
the number of parameters: 7B, 13B and 70B.

Mistral represents another significant collection of
LLMs, characterized by their advanced reasoning capabil-
ities and a robust performance. Their largest model, Mis-
tral Large, demonstrates state-of-the-art results across a
variety of benchmarks, including areas such as common
sense, reasoning, and knowledge-based tasks [30]. The
Mistral family also includes open-source models that sur-
pass certain versions of Llama 2 in several benchmarks,
as documented by [31].

3.2. Datasets
Covid19 explanations The questions included in Ta-
ble 1 are created from a clinical study [32]. In that study
one thousand and three hundred thirty-one COVID-19 pa-
tients (medium age 66.9 years old; males n= 841, medium
length of hospital stayed 8 days, non-survivors n=233)
were analyzed. Based on the hypotheses raised in the
study, the questions are constructed. Questions Q2, Q3,
Q4, Q5, Q6, Q7, and Q8 were identified as significant
using a regression Cox model and Q1, Q9, Q10 were
identified as significant by univariate analysis. Q1 was
also identified as 1 of the most important variables using
SHAP explanations over LSTM learned model using the
same Covid19 dataset. By domain knowledge and based
on model explanations we can set Q1, Q2, Q3, Q4, Q5, Q6,



Table 1
Consistency questions dataset

Consistency

Q1 Does hypertension mean an
increased risk of death from COVID-19?

Q2 Does a low platelet count mean an
increased risk of death from COVID-19?

Q3 Does a high leukocyte count at emergency mean
an increased risk of death from COVID-19?

Q4 Does older age mean an increased
risk of death from COVID-19?

Q5 Does male gender mean an increased
risk of death from COVID-19?

Q6 Does previous chronic therapy with steroids
mean an increased risk of death from COVID-19?

Q7 Does not treating with hydroxychloroquine
mean an increased risk of death from COVID-19?

Q8 Does oxygen saturation at emergency mean
an increased risk of death from COVID-19?

Q9 Does no early prescription of lopinavir/ritonavir
mean an increased risk of death from COVID-19?

Q10 Does no treatment with steroid bolus mean
an increased risk of death from COVID-19?

and Q8 as positive truth answers. We did not include Q7
as a positive response (but controversy), despite being
obtained by the Cox model explanations, because there
was controversy about the use of hydroxychloroquine
during the pandemic and although it was initially consid-
ered as a drug to reduce the risk of mortality, it was later
contradicted by other studies and was not recommended
by the World Health Organization. Therefore, the vari-
ables that were obtained only by the univariate analysis
(Q9 and Q10) are proposed as controversy answers.

It is important to highlight that all the questions adhere
to a consistent structure to optimize the performance of
the LLM. Specifically, each question is framed as “Does
#hypothesis# mean an increased risk of death from COVID-
19?”. This uniformity ensures that the LLM’s responses
are directly comparable and minimizes variability that
could arise from differing question formats. It also allows
to test hypothesis obtained by the explainability models.

Veracity dataset The Stanford Question Answering
Dataset (SQuAD) [33] has been extensively used in the
scientific literature for the development of Question An-
swering (QA) language models, serving as a benchmark
to assess the abilities of these models in understanding
and processing natural language queries. As a rich com-
pilation of questions and answers based on Wikipedia
articles, SQuAD challenges models to provide accurate
answers by comprehending the context provided in the
passages.

In our work, we retrieved a subset of questions from
the SQuAD dataset to specifically validate the knowl-

edge conveyed by LLMs. This targeted evaluation was
designed to determine the precision of the LLM answers
compared to the gold standard answers of the data set.
This method of validation not only tests the LLMs’ under-
standing of complex texts, but also assesses their reliabil-
ity in providing information that matches human-curated
answers.

3.3. Use Cases
Three use cases (UC) have been designed to address pre-
vious research questions, focusing on the practical ap-
plications and implications of using LLMs to validate
machine learning inferences. The first area investigates
the influence of varying the number of options in fact-
check questions on LLM responses, aiming to understand
how choice diversity impacts LLM accuracy. The second
focuses on assessing the consistency of boolean (yes or
no) answers provided by LLMs, evaluating their relia-
bility in delivering steady responses. Lastly, we explore
the effects of combine machine learning inferences with
LLMs to both enrich and validate the explanations of
these models. This last use case uses the Covid19 dataset
to create a ML model and the SHAP technique to obtain
a set of important features that later are enriched with
LLMs.

The models used in this study include “gpt-4” from
OpenAI, “mistral-large-2402” from Mistral AI, “gemini-
1.0-pro-001” from Google, and “llama-2-70b-chat” from
Meta AI. In addition, the temperature parameter was set
to the lowest possible value to ensure the most deter-
ministic behavior in the LLMs. Temperature controls
the randomness of the generated output, with a lower
value leading to more deterministic outputs by favoring
the most likely predictions. Therefore, in most models,
the temperature value was set to 0 to minimize random-
ness. However, it is important to note that for the Llama
2 model, the minimum supported temperature value is
0.01. Despite this slight deviation from 0, the aim re-
mains the same: to achieve the lowest possible level of
randomness in the output.

UC1: Fact Density Impact Analysis It examines the
performance of LLMs in delivering binary responses (“yes”
or “no” ) versus incorporating a third option (“contro-
versy” ) to introduce an element of uncertainty. This eval-
uation aims to measure the models’ performance in terms
of veracity, exploring how the structure of the response
options affects the LLMs’ ability to provide accurate and
reliable answers in fact-checking scenarios.

Table 2 presents the prompts used in three scenarios
to evaluate veracity, allowing the model to use binary re-
sponses or multiple options, and requesting the model to
act as an expert in the clinical domain, providing precise



Table 2
Use Case 1 Contexts

Prompt

Context 1

You are an expert on COVID-19 and your duty is
to answer questions related to the topic only with

yes or no followed by the explanation that validates
the answer in a maximum of 2 sentences.

Context 2

You are an expert on COVID-19 and your duty is
to answer questions related to the topic only with
yes, no or controversy followed by the explanation

that validates the answer in a maximum of 2 sentences.

Context 3
You are a medical expert and your duty is
to answer medical questions in a single
sentence in a precise and brief manner.

and concise responses. The use of the parameter max-
tokens inadvertently caused responses to be abruptly cut,
leading to nonsensical outcomes. Consequently, we di-
rected the model within the context to be precise and
concise, with the aim of minimizing this issue and en-
hancing the clarity and relevance of its answers. This
additional context of evaluation was designed to gauge
the model’s capacity to offer accurate and reliable an-
swers when positioned as a domain-specific authority,
further enriching our understanding of its performance
in delivering veracious responses within specialized sce-
narios. This distinction allows for a detailed examination
of how the inclusion of an “controversy” option alongside
traditional “yes” or “no” answers influences the model’s
response behavior in our Use Case 1 analysis.

UC2: Consistency and Veracity Evaluation Use
Case 2 distinguishes between two methods of evaluat-
ing LLM consistency based on the availability of ground
truth. In the first approach, where the true answer is
not available, consistency is assessed by comparing the
LLM’s responses against each other. This method focuses
on the internal consistency of the model’s answers. In
the second approach, where a known true answer exists,
the LLM’s responses are evaluated against this ground
truth to measure the model’s accuracy and reliability
in providing consistent and correct answers, a quality
referred to as veracity.

On the one hand, the first approach or consistency
evaluation aims to assess the stability of responses from
LLMs through repeated inquiries. By introducing an algo-
rithm 1 to systematically evaluate consistency within the
Covid19 dataset, we probe each question in the dataset
multiple times using the question and Context 1 as the
prompt. This method allows us to gauge the LLMs’ consis-
tency using the metrics described in Section 3.4. Similarly,
the same algorithm is used with Context 2.

The following algorithm was deployed twice for each
LLM, once for each of the two contexts, and the tem-

perature parameter was minimized to enhance response
determinism. This methodology provides a nuanced un-
derstanding of the models’ consistency by ensuring con-
trolled conditions and leveraging the lowest possible tem-
perature setting to maximize the determinism of the mod-
els’ responses.

Algorithm 1 Evaluate the consistency of a single LLM
1: for each question 𝑞𝑖 in dataset1 do
2: Initialize Responses to an empty list
3: for 𝑖← 1 to 10 do
4: response r ← AskLLM(𝑞𝑖, context1)
5: Append 𝑟 to Responses
6: end for
7: SemanticSimilarity ← CalculateSemanticSimilar-

ity(Responses)
8: Overlap← CalculateOverlap(Responses)
9: ROUGE← CalculateROUGE(Responses)

10: BLEU ← CalculateBLEU(Responses)
11: Store metrics for further analysis
12: end for

On the other hand, the veracity evaluation involves
the use of ground truth. Therefore, akin to the previous
method, we employ a different algorithm (see Algorithm
2) designed to assess the veracity of each response from
each model. The key difference in this approach is that
when invoking the LLM, both the response along with
its context (Context 3) and the ground truth for each
response (“𝑞𝑖 answer”) are provided. This enables a direct
comparison between the LLM’s responses and the known
accurate answers.

UC3: XAI Enhancement and Validation Use Case
3 involves leveraging machine learning inferences and
LLMs to enrich and validate explanations. We propose to
utilize important features identified by XAI techniques,
such as SHAP, to augment information and validate ex-
planations. This involves transforming explanations into
binary questions that LLMs can answer, with prompts



Algorithm 2 Evaluate the veracity of a single LLM
1: for each question 𝑞𝑖 in dataset2 do
2: Initialize Responses to an empty list
3: for 𝑖← 1 to 10 do
4: response 𝑟𝑖 ← AskLLM(𝑞𝑖, context3)
5: Append 𝑟𝑖 to Responses
6: end for
7: SemanticSimilarity ← CalculateSemanticSimilar-

ity(Responses, 𝑞𝑖 answer)
8: Overlap← CalculateOverlap(Responses, 𝑞𝑖 answer)
9: ROUGE← CalculateROUGE(Responses, 𝑞𝑖 answer)

10: BLEU ← CalculateBLEU(Responses, 𝑞𝑖 answer)
11: Store metrics for further analysis
12: end for

that contain both the question and relevant contexts. By
constructing queries to directly link significant features
with real-world results (e.g. ’Does #hypothesis# mean
an increased risk of death from COVID-19?), we bridge
the gap between XAI insights and practical applications.
Additionally, by instructing LLMs to respond with “yes”
or “no” and provide validating explanations, we achieve
dual objectives of validating and enriching responses,
prompting LLMs to elaborate on pertinent features.

3.4. Metrics
A suite of metrics has been implemented to evaluate the
consistency and veracity of the LLMs. This suite includes
semantic similarity, token overlap, and the ROUGE and
BLEU metrics.

Semantic similarity is a measure of the degree to
which two concepts (such as words, phrases, or sen-
tences) are related in terms of their meanings within
a given semantic space. In formal terms, semantic simi-
larity can be quantified based on the distance or closeness
of the concepts in a multi-dimensional space, where each
dimension represents a feature of the concept’s mean-
ing. The closer two concepts are in this space, the more
semantically similar they are.

Diverse methods for calculating semantic similarity are
analysed in [34], encompassing a range of approaches.
However, this research will specifically utilize cosine
similarity in conjunction with sentence embeddings. We
will use Sentence-BERT, a variation of BERT(Devlin et
al., 2018) optimized for sentence-level embeddings, due
to their proven efficiency [35]. In particular, this research
utilizes the “all-MiniLM-L6-v2” model for its remarkable
balance between high performance and speed. Despite
being one of the smallest models in terms of size, it stands
out for its rapid processing capabilities.

Overlap as a metric refers to the method of quantifying
similarity based on the common tokens (words or other

meaningful elements) that appear in two sentences. This
metric is used to assess how much shared content exists
between both sentences, indicating their consistency or
similarity in terms of the information they convey.

ROUGE stands for Recall-Oriented Understudy for
Gisting Evaluation. ROUGE includes a collection of met-
rics designed for the formal evaluation of text generation
models such us summarization or machine translation.
In the evaluation of responses generated by a LLM, the
use of the ROUGE metric can be justified by its ability
to quantitatively measure the lexical overlap across dif-
ferent responses generated by the LLM itself. This is
accomplished utilizing the ROUGE-L variant, which em-
ploys the Longest Common Subsequence (LCS) between
two sentences as a basis for computing recall, precision,
and the 𝐹1 score derived from both [36].

BLEU stands for Bilingual Evaluation Understudy.
BLEU is a metric initially conceived for evaluating the
quality of text translated by machine translation sys-
tems by comparing it with one or more reference transla-
tions [37]. Unlike ROUGE, which is recall-oriented, BLEU
emphasizes precision. It assesses how many words or
phrases in the machine-generated text appear in the ref-
erence texts. This metric calculates n-gram (contiguous
sequences of n items from a given sample of text) pre-
cision for different lengths and combines them through
a weighted geometric mean, incorporating a brevity
penalty to discourage overly short translations [37].

This precision-oriented approach is particularly valu-
able when the objective is to ensure that certain key infor-
mation is consistently represented in the LLM’s outputs.
We computed the BLEU metric by treating each LLM
response as a “translation” and comparing it to other re-
sponses. BLEU can highlight the extent to which the LLM
is capable of producing responses that contain expected
and relevant content. This method offers a complemen-
tary perspective to the recall-focused metric ROUGE,
providing a balanced assessment of the LLM’s perfor-
mance.

4. Evaluation and Results
In this section we evaluate the different use cases.

4.1. UC1 Results
The first use case focuses on evaluating how the structure
of response options presented to the LLM influences the
performance of the models’ accuracy and reliability. This
evaluation was addressed by using different contexts:
Context 1 which employs a binary response (such as “yes”



Table 3
Context 1 vs Context 2 responses for all LLMs

GPT Mistral Gemini Llama2
Expected Context 1 Context 2 Context 1 Context 2 Context 1 Context 2 Context 1 Context 2

Q1 yes yes yes yes yes yes controversy yes yes
Q2 yes yes yes yes yes yes controversy no controversy
Q3 yes yes yes yes yes yes controversy yes controversy
Q4 yes yes yes yes yes yes yes yes yes
Q5 yes yes yes yes yes yes yes no controversy
Q6 yes yes controversy yes controversy no controversy yes controversy
Q7 controversy no controversy no controversy no controversy no controversy
Q8 yes yes yes yes yes yes yes yes controversy
Q9 controversy no controversy yes controversy no controversy yes controversy
Q10 controversy yes controversy yes controversy no controversy yes controversy

or “no”), and Context 2, which introduces a third element
associated to uncertainty characterized as “controversy”.

Table 3 shows the results of the models’ responses for
each question. It is important to clarify that although mul-
tiple responses are generated for each question (specifi-
cally 10), the table presents only a single value in each
cell. This reduction is justified because the answers (“yes”,
“no” or “controversy”) do not vary across iterations. What
varies is the model’s explanations of the responses, not
the answer itself.

However, some differences can be noted both in the
responses generated by a LLM with different contexts for
the same question and in the performance across various
language models (e.g. Q1 in Context 2 is answered as “yes”
by GPT but “controversy” by Gemini). These variations
reveal that while some differences can be attributed to
the introduction of ’controversy’ in response options (e.g.
GPT Q7), others may not have such a clear justification
(e.g. Gemini Q2).

Optimally, each LLM should make three justified varia-
tions (Q7, Q9, and Q10) when introducing the uncertainty
option with the second context, due to the limitation
of Context 1 to binary “yes” or “no” answers. For GPT,
an analysis of the responses between contexts reveals a
mixed outcome: 3 of the variations presented are deemed
correct (Q7, Q9, and Q10), indicating that the model ac-
curately handled both contexts. Conversely, the model’s
responses to the question Q6 is classified as wrong varia-
tions, suggesting inaccuracies in dealing with different
contexts.

Similarly, the performance of the other models is as
follows:

• Mistral accurately handles 3 variations (Q7, Q9,
and Q10) but had an error in Q6.

• Gemini stands out by correctly handling 3 varia-
tions (Q7, Q9, and Q10) but falls short by produc-
ing 4 unjustified incorrect variations (Q1, Q2, Q3,
Q6), including a notable discrepancy in Question
6 where the expected answer was “yes”, but the
output was “no”.

• Llama2 demonstrates accuracy in variations of
Q7, Q9, and Q10. However, it produces unjusti-
fied variations in Q2, Q3, Q5, Q6, and Q8. Fur-
thermore, it provides incorrect answers for Q2
and Q5, where “yes” was expected, but “no” was
output.

Our findings suggest that introducing the option of
“controversy” as a potential response significantly influ-
ences the behavior of the analyzed LLMs, leading to a
noticeable shift in their response patterns. Across various
models, including GPT and Mistral, where the response
changed in 4 out of 10 instances, Gemini with a change
in 7 out of 10 instances, and Llama2 showing a change in
8 out of 10 instances, there is a marked preference for se-
lecting “controversy” over a definitive “yes” or “no”. This
tendency persists irrespective of the model in question
and appears to reflect a broader pattern: when presented
with the “controversy” option, models consistently avoid
negative responses, opting instead to categorize state-
ments as controversial. This behavior suggests a higher
level of confidence in asserting conclusions rather than
denying them. While for GPT and Mistral, 75% of these
shifts towards “controversy” can be considered justified,
enhancing the quality of the output, the justification for
this change drops to 43% for Gemini and 37% for Llama2,
indicating variability in how these adjustments align with
the underlying data uncertainty.

4.2. UC2 Results
In this section, we present the results from the second
use case, which are detailed in Tables 4 and 5. These
tables show the average performance metrics for consis-
tency and veracity -namely, semantic similarity, overlap,
ROUGE and BLEU scores - for each model across various
datasets. These metrics were computed for each ques-
tion within the datasets, with averages provided to give
a view of each model’s performance under two different
contexts (i.e Context 1 and Context 2 ) for consistency eval-
uation (Table 4; the consistency results per questions are



Table 4
Average consistency evaluation

Semantic
similarity Overlap ROUGE BLEU

GPT Context 1 0,983 0,888 0,844 0,770
Context 2 0,980 0,897 0,853 0,763

Mistral Context 1 1,000 1,000 1,000 1,000
Context 2 0,999 0,995 0,992 0,988

Gemini Context 1 1,000 0,996 0,996 0,992
Context 2 0,999 0,996 0,993 0,986

Llama2 Context 1 1,000 0,998 0,997 0,996
Context 2 0,999 0,991 0,989 0,983

Table 5
Average veracity evaluation

Semantic
similarity Overlap ROUGE BLEU

GPT 0,740 0,464 0,301 0,408
Mistral 0,727 0,403 0,222 0,380
Gemini 0,676 0,415 0,273 0,328
Llama2 0,734 0,466 0,239 0,393

provided at Appendix TableA1) and a third context (i.e.
Context 3) for veracity evaluation (Table 5; the veracity
results per questions are provided at Appendix TableA3).

Our analysis reveals no significant difference in per-
formance between the first two contexts evaluated for
consistency, where all LLMs demonstrated high levels of
consistency. Mistral achieved perfect consistency scores,
while Gemini and Llama2 were nearly perfect. However,
GPT showed the lowest consistency (for all metrics in-
cluding semantic similarity), even with the temperature
parameter set to the lowest level, indicating potential
variability in its response generation process.

When comparing the models’ performance to the
ground truth data for veracity (see Section 3.2), GPT
stands out by achieving the best results across all met-
rics, indicating that its responses, on average, align more
closely with the ground truth than those of the other
models. Llama2 follows closely behind as the second-
best performer, with Gemini and Mistral trailings and
their positions varying depending on the metric applied.
These findings suggest that while GPT may struggle with
consistency relative to its peers, it excels in generating
responses that are more closely aligned with verifiable
facts, highlighting a nuanced trade-off between consis-
tency and veracity across different LLMs.

4.3. UC3 Results
It examines the use of prompts that transform explana-
tions into binary questions that contain both the question
and relevant contexts related with the fact-checking un-

Table 6
Average consistency of explanations

Semantic
similarity Overlap ROUGE BLEU

GPT 0,916 0,659 0,541 0,375
Mistral 0,931 0,673 0,570 0,389
Gemini 0,915 0,600 0,442 0,247
Llama2 0,905 0,552 0,411 0,219

der analysis (e.g. Context 1 ’You are an expert on COVID-
19 and your duty is to answer questions related to the
topic only with yes or no followed by the explanation
that validates the answer in a maximum of 2 sentences.’).
Table 7 shows example of responses for Q1, Q2, Q3 from
GPT-4. Q1 enriches the fact-checking response adding
information related with the consequences of having hy-
pertension and how they are related to higher death risk.
Q2 enriches the response adding reasons why the impor-
tant feature (i.e. platelet) plays a crucial role that may
lead to high risk of death. Last, Q3 response enriches the
response indicating that a high leukocyte can be a symp-
tom of severe Covid19. At table 8 we studied syntactically
the number of words that contain the explanation and
also the average number of words per sentence. Llama2
and Mistral have larger explanations and also syntacti-
cally are slighly more comples (Llama2 has ≈ 28 words
per sentence for context2). Gemini provides the shortest
explanations and also the lowest syntactic complexity
(36.72 number of words average and 19.91 words per sen-
tence). Similarly to previous use cases we analyzed the
differences between Context 1 and Context 2 explanations
(including the controversy as an option in the second) to
measure how different are the explanations. According to
all metrics the results show that the LLM that change the
most is Llama2 (i.e. ROUGE 0.411), followed by Gemini
(i.e. ROUGE 0.442), GPT-4 (i.e. ROUGE 0.541) and Mistral
(i.e. ROUGE 0.570) (see Table 6 for other metrics).



Table 7
Examples of responses for GPT-4

Example of responses

Q1

Yes, hypertension has been identified as a risk factor for severe
outcomes in patients with COVID-19. Studies have shown that patients

with hypertension are more likely to experience severe symptoms or
complications, including death, from the virus.

Q2

Yes, studies have shown that a low platelet count, or thrombocytopenia,
can be associated with a higher risk of severe disease and mortality in
patients with COVID-19. This is because platelets play a crucial role

in the body’s immune response, and a low count can impair the body’s
ability to fight off infections.

Q3

Yes, a high leukocyte count, or leukocytosis, can indicate a severe
infection or inflammation in the body, including severe COVID-19.
Studies have shown that patients with severe COVID-19 often have

leukocytosis, which is associated with a higher risk of mortality.

Table 8
Average number of words of explanation per text and per
sentence

Avg words
per text

Avg words
per sentence

GPT
Context 1 39,38 19,69
Context 2 37,46 22,65
Average 38,42 21,17

Mistral
Context 1 53,30 21,62
Context 2 45,70 20,20
Average 49,5 20,91

Gemini
Context 1 37,70 18,85
Context 2 35,74 20,98
Average 36,72 19,915

Llama2
Context 1 57,70 23,20
Context 2 50,76 27,69
Average 54,23 25,445

5. Conclusions
In this paper we studied the effect of variation in the
number of options within fact-checking questions, the
consistency and truthfulness of the answers, and the ca-
pabilities to enrich fact-checking with explanations. We
also proposed to link explanations from machine learn-
ing models to LLMs by using those explanations to create
a fact-checking type input question. We measured co-
herence and veracity using state-of-the-art metrics such
as semantic similarity, overlap, ROUGE and BLEU, and
the results show that Mistral is the most coherent LLM.
Notably, Gemini and Llama2 obtained similar results and
GPT was slightly behind. Furthermore, we conclude that
fact-cheking consistency does not depend on the number
of options but explanations’ consistency does. This is rel-
evant because it means that a different number of options
not only may change the fact response but will also be
able to justify it differently. Further research should be
done to analyze in depth to what extend these differences

might even imply contradictory responses. As for the
truthfulness analysis, we observed that GPT obtained
the best results on average and can be considered quite
accurate.
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A. Appendix. Detailed results of the consistency and veracity metrics
for the three contexts.

Table A1
Consistency evaluation per question with Context 1

GPT Mistral Gemini Llama2
Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU

Q1 0,949 0,760 0,666 0,462 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q2 0,989 0,941 0,935 0,880 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,999 0,983 0,983 0,977
Q3 0,975 0,868 0,789 0,731 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q4 0,984 0,823 0,757 0,653 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,992 0,990 0,985
Q5 0,981 0,895 0,841 0,738 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q6 0,996 0,972 0,948 0,925 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q7 0,980 0,864 0,833 0,800 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q8 0,993 0,899 0,874 0,797 1,000 1,000 1,000 1,000 0,998 0,964 0,961 0,922 1,000 1,000 1,000 1,000
Q9 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Q10 0,987 0,858 0,800 0,710 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Average 0,983 0,888 0,844 0,770 1,000 1,000 1,000 1,000 1,000 0,996 0,996 0,992 1,000 0,998 0,997 0,996

Table A2
Consistency evaluation per question with Context 2

GPT Mistral Gemini Llama2
Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU

Q1 0,976 0,969 0,924 0,825 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q2 0,997 0,990 0,988 0,976 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q3 0,972 0,869 0,832 0,663 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q4 0,998 0,926 0,920 0,875 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q5 0,997 1,000 0,963 0,904 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q6 0,939 0,706 0,556 0,383 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0,991 0,969 0,957 0,925
Q7 0,949 0,736 0,649 0,475 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000
Q8 0,996 0,932 0,896 0,867 0,991 0,954 0,927 0,903 0,995 0,960 0,957 0,925 0,995 0,944 0,932 0,903
Q9 0,990 0,927 0,906 0,862 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Q10 0,982 0,918 0,895 0,796 1,000 0,991 0,989 0,977 0,998 1,000 0,975 0,938 1,000 1,000 1,000 1,000
Average 0,980 0,897 0,853 0,763 0,999 0,995 0,992 0,988 0,999 0,996 0,993 0,986 0,999 0,991 0,989 0,983

Table A3
Veracity evaluation per question with Context 3

GPT Mistral Gemini Llama2
Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU Semantic
similarity Overlap ROUGE BLEU Semantic

similarity Overlap ROUGE BLEU

Q1 0,777 0,750 0,466 0,612 0,770 0,750 0,424 0,537 0,412 0,250 0,181 0,368 0,777 0,750 0,466 0,612
Q2 0,647 0,554 0,331 0,347 0,677 0,550 0,244 0,298 0,596 0,599 0,461 0,496 0,668 0,700 0,363 0,294
Q3 0,687 0,285 0,178 0,289 0,681 0,380 0,173 0,349 0,698 0,500 0,266 0,358 0,680 0,380 0,210 0,420
Q4 0,764 0,448 0,207 0,409 0,805 0,466 0,239 0,507 0,714 0,157 0,093 0,218 0,648 0,290 0,163 0,304
Q5 0,665 0,428 0,255 0,184 0,619 0,312 0,222 0,259 0,622 0,350 0,260 0,137 0,634 0,297 0,101 0,271
Q6 0,778 0,458 0,368 0,479 0,737 0,333 0,170 0,384 0,774 0,533 0,294 0,242 0,787 0,500 0,307 0,436
Q7 0,758 0,350 0,191 0,373 0,733 0,256 0,161 0,361 0,631 0,413 0,254 0,306 0,821 0,435 0,242 0,454
Q8 0,889 0,679 0,543 0,769 0,791 0,411 0,235 0,440 0,858 0,529 0,461 0,673 0,926 0,647 0,156 0,405
Q9 0,705 0,269 0,202 0,196 0,725 0,242 0,107 0,259 0,746 0,230 0,163 0,220 0,691 0,222 0,175 0,300

Q10 0,731 0,420 0,264 0,423 0,728 0,333 0,244 0,402 0,708 0,588 0,299 0,266 0,706 0,441 0,210 0,437
Average 0,740 0,464 0,301 0,408 0,727 0,403 0,222 0,380 0,676 0,415 0,273 0,328 0,734 0,466 0,239 0,393
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